
Achieving Higher Level of Assurance in Privacy
Preserving Identity Wallets

Benjamin Larsen∗, Nada El Kassem†, Thanassis Giannetsos‡, Ioannis Krontiris§, Stefanos Vasileiadis‡ and Liqun Chen†
∗Technical University of Denmark, Kongens Lyngby, Denmark, Email: benlar@dtu.dk
†University of Surrey, Surrey, UK, Email: {nada.elkassem,liqun.chen}@surrey.ac.uk
‡Ubitech Ltd., Athens, Greece, Email: {agiannetsos,svasileiadis}@ubitech.eu

§Huawei Technologies Duesseldorf GmbH, Munich, Germany, Email: ioannis.krontiris@huawei.com

Abstract—Recent advances in Decentralized Digital Identity
solutions, revolving around the use of Verifiable Credentials
towards identity sovereignty, are centered around Identity Wallets
for ensuring that identity data control remains with the user.
However, such schemes still lack the capabilities to provide higher
Level of Assurance (LoA) guarantees, for identity verification,
which restricts their full potential. In this paper, we design
and showcase DOOR; a library that enables Identity Wallets
to leverage hardware Roots-of-Trust (RoT) for binding user
authentication factors to HW-based keys, thus, allowing for both
proof of (User) identity and (Wallet) integrity, bringing them in
alignment with emerging regulations and standards that require
higher LoA for services (e.g. eIDAS). At the same time, we make
sure that privacy-enhancing properties like selective-disclosure
are fully supported in order to make the Wallet compliant with
privacy regulations (e.g. GDPR). To achieve all the above, we
have designed an enhanced variant of Attribute-based Direct
Anonymous Attestation (DAA-A) crypto protocol for offering
anonymity, unlinkability, and unforgeability, while being the
first to offer strong guarantees on the Wallet’s integrity when
constructing attribute attestations. We formally prove the security
properties of DOOR, offered by the underlying crypto primitives
used to enable selective disclosure of attributes, by describing
their construction while also benchmarking their computational
footprint and comparing them with other widespread crypto-
graphic mechanisms (adopted by the standards) in terms of
performance, size of the associated verifiable presentations while
safeguarding user anonymous authentication and unlinkability.

Index Terms—Identity Wallet, Selective Disclosure, Anony-
mous Credentials, Trusted Computing, Self-Sovereign Identity

I. INTRODUCTION

Currently, there is an increasing shift to decentralized digital
identity models, where there is no single governing orga-
nization that has control over identity data origin. Instead,
participants produce and manage their own identifiers and
credentials without deference or permission from any other
administrative organization. The World Wide Web Consor-
tium (W3C) is currently developing two new standards to
realize this emerging model; namely, Decentralized Identifiers
(DIDs) [1] and Verifiable Credentials (VCs) [2].

In the ecosystem of Verifiable Credentials, the Issuer issues
a credential containing a set of claims on a Subject and
transfers it to a Holder, who is typically the same entity. The
Holder stores the VCs in a storage called the Identity Wallet.
In response to a request from the Verifier, the Holder retrieves

one or more stored VCs from her Wallet and presents them to
the Verifier. Alternatively, the Holder can construct Verifiable
Presentations (VPs), i.e. a collection of claims that a Holder
can contract from different VCs issued by varying entities.
Then, a Holder can prove to a Verifier that she has ownership
of the required set of attributes, for accessing a resource or
completing a transaction, by presenting either the issued VCs
or locally constructed VPs. This is usually achieved through a
unique identifier (e.g., public key), owned by the Holder that
enables her to generate proof of possession on specific claims
(e.g., a digital signature with the corresponding private key).

Furthermore, VCs can be combined with cryptographic
schemes [3], [4] to enable the Holder to manage her privacy
by choosing the level of information disclosure. That is,
the Holder can select only some of the attributes - in the
credentials she owns - and prove that they are certified by a
trusted Issuer, without revealing any further information; i.e., a
signature from the Holder’s unique identifier or other remain-
ing attributes. This property is called selective disclosure.

One core challenge, in this direction of identity sovereignty,
is the verification of the integrity and origin of the presented
VCs or VPs: How can someone be sure that they really belong
to the claimed entity? On a technical level, this translates into
Holders having control of their own VCs and DIDs through
their Wallets, which can ensure that credentials and (private)
keys can only become available to this specific Holder as the
actual owner of the issued Wallet credentials. Since it is only
the Holder (as the Identity Owner) that knows the (private) key
associated with a DID, the level of control and credential man-
agement assurance relies solely on possessing and controlling
the private key, which in current designs is a software-based
key. However, the use of a software keystore introduces many
security risks and raises trustworthiness issues [5], [6]. So the
above challenge translates into the more technical question:
How can a Verifier be sure that the respective key of the Holder
presenting a VC remains under her control, and cannot be
used by any other unauthorized entity?

This question is particularly important because it relates
to the requirement towards achieving a certain Level of
Assurance (LoA) behind credential management [7]. The
LoA characterizes the degree of confidence in the electronic
identification means, thus, providing assurance that the person

claiming a particular identity is, in fact, the intended recipient
to which that identity has been assigned. For instance, in the
case of Europe, the eIDAS regulation [8] clearly defines the
requirement for multiple knowledge- and possesion-based au-
thentication factors to achieve a LoA classified as “substantial”
(e.g., fingerprints and secret key). Bare proof-of-possession of
a SW-based key does not achieve even the lowest LoA in
eIDAS, since it involves only a single authentication factor
which is exposed to numerous threats due to its nature [6];
i.e., can be subject to spoofing, duplication or leakage attacks.

One of the necessary measures to solve such security
gaps, and reach LoA “high”, is to isolate the keys from the
Holder while still being stored in the user’s domain. There
are several types of isolation defined in the literature that can
be achieved through the incorporation of trusted computing
technologies, i.e., Hardware Secure Module (HSM), Trusted
Platform Module (TPM), or Trusted Execution Environment
(TEE). All such trusted anchors provide reliable, tamper-
evident, and secure processing units (including support for
crypto operations, key storage, and authentication) that offer
a trustworthy environment for executing applications.

Another requirement to achieve LoA ”high” is the binding
of identity data to the Holder (Holder Binding). This binding
is based on a unique identifier representing the Holder, i.e.,
a secret key. One way to have high confidence is to make
sure that the secret key is bound to the Wallet managing the
identity data. For instance, DIF defines this property as Device
Binding, that is, “a building block that enables a differential
credential security model by anchoring a hardware-generated
key (e.g., TPM Key) to the credential.” [9]. This sets the
challenge ahead: How can we achieve both requirements for
higher LoA while empowering the user to control the level
of her privacy by selectively disclosing only those attributes
needed in a verifiable manner? This requires the Wallet to not
only be equipped with a HW-based Root-of-Trust but to use
this trust anchor for securely managing (attribute) keys and
creating attribute attestations that provide proof-of-possession
about the unique Holder identifiers, but without disclosing any
further information (property of selective disclosure).

To this end, if we want to consider the core feature of
selective disclosure, we have to be able to use zero-knowledge
(ZK) proofs for each attribute separately. This essentially
boils down in been able to represent each attribute with a
separate key and present the necessary commitments as proof-
of-possession. However, this further aggravates the problem of
assurance since such schemes require the use of additional
software-based keys resulting into a difficulty to achieve
balance between safeguarding user privacy (anonymity, unlink-
ability and selective disclosure) while guaranteeing integrity
and unforgeability of the produced ZK attribute attestations.

All in all, the challenge of building a solution facilitating
hardware-based keys becomes more pressing and extends to
not only binding a credential to the Wallet but also binding
each Holder identifying attribute to the credential and, in turn,
to the host Wallet, thus, achieving a “chain-of-trust” when pre-
senting verifiable attribute attestations. What is needed are new

mechanisms and security controls for managing attribute-based
credentials, safeguarded through HW-based keys, providing
an efficient way to disclose a Holder’s personal attributes,
while minimizing risk of sensitive data revelation and thus
granting anonymity, unforgeability and unlinkability. Indeed,
the privacy at the attribute level has been investigated by other
approaches [10], [11], but combining this with the device bind-
ing of attribute keys, thus, enabling hardware-bound attribute-
based credentials, has never been studied before.

Contribution: To solve this open problem, this paper is
the first to propose a protocol leveraging an enhanced variant
of Direct Anonymous Attestation (DAA) [12] where each
one of the attributes can be represented as a key, bound to
the Holder’s unique identifier, which in turn is bound to the
underlying trusted component. This allows the user to create
privacy-preserving attribute claims (disclosing only those at-
tributes needed to be checked against service access control
policies) with strong trust guarantees on the correctness and
origin of the attributes. More specifically, we propose DOOR,
a new scheme that showcases how hardware-based keys can
achieve the envisioned property of higher LoA for credential
management, while enabling privacy preservation via selec-
tive disclosure. DOOR proposes an enhanced variant of an
anonymous signature scheme, namely Attribute-based DAA
(DAA-A) [13], to achieve this: DAA-A is a strong privacy-
preserving authentication scheme that enables the construction
of VPs with selective disclosure through the representation of
attributes as keys, hence, enabling the encoding and sharing
of complex structures as key hierarchies. To overcome the
current limitation of traditional crypto schemes that do not
consider VC/VP linkability issues leading to Holder profil-
ing, we have designed an enhanced variant of DAA-A with
“credential blinding” capabilities. It ensures Holder anonymity
and VC/VP unlinkability, and unforgeability while being the
first to offer strong guarantees on the Wallet’s integrity when
constructing attribute attestations. DOOR also ensures the
binding of the identity data, at the attribute level, to the Holder
by cryptographically binding the Wallet to the intended owner.
Based on this feature, we offer higher levels of confidence to
the authentication and electronic identification service of the
Wallet - hence, a higher LoA. As part of DOOR, we further
propose a formal definition of the security properties that a
protocol should offer to achieve LoA “high” as a guideline
for identity proofing and verification procedures extending
beyond identification to also authentication and transactions
authorization. We also present a performance analysis and
evaluation of DOOR based on real-world implementation.

A. Wallet Properties & Requirements

Our design follows the concepts and roles defined by W3C
for the ecosystem of VCs [2]. The main actors include the
Issuer, Subject, Holder, and Verifier. This model should satisfy
additional security properties, in order to allow any Wallet to
achieve the highest LoA, extending the set of requirements
defined in ISO 29115 and the eIDAS implementation act [7].

Definition 1: (Holder Binding) It must be ensured that issued
identity data are delivered only to the intended Holder.

The intention of this definition is to safeguard against
adversaries that try to construct VPs without having access
or being the intended recipient of the issued credentials. This
might occur, for instance when an adversary gets access to
a Holder’s VCs (but not her unique identifier - secret key)
and constructs VPs that would be accepted by a Verifier. We
differentiate this from the scenario where a legitimate Holder
is acting on behalf of another user (e.g., parents attesting to
attributes of their children).

Definition 2: (Device Binding) Issued VCs should be bound
to the Holder’s unique identifier (i.e. secret key) and no one
should be able to use or show this credential without proof of
possession of this unique identifier.

In continuation to the Holder Binding property, this defini-
tion further ensures the issuance of credentials bound to the
Holder’s secret key, so that no one can show this credential
without proof-of-possession of this unique key identifier. This
requires the anchoring of the public part of the Holder’s secret
key to the credential. The key needs to be a hardware-based
key originating from a Trusted Component (TC), hosted on
the Holder, so that additional security policies can be enforced
for protecting against key leakage and ensuring that only the
Holder’s authenticated Wallet can securely contract the key for
creating signed attribute attestations.

Definition 3: (Selective Disclosure) VPs should constitute
collections of claims that the Holder can construct (from is-
sued VCs) disclosing only those attributes needed for verifica-
tion without revealing further information on the claims, such
as signature of the VC Issuer or other remaining attributes.

Selective disclosure guarantees that if all I credentials with
any K attributes each are correctly issued to a Holder by
L honest VC Issuers, then any presentation with selective
disclosure and proof of possession of the original credential
(indicated by c) as well as proof of Wallet integrity (indicated
by signature σD), correctly computed by the Holder will be
accepted by the Verifier.

Definition 4: (Full Anonymity) Shared VCs and/or VPs are
considered anonymous when no adversary or (single) “honest-
but-curious” infrastructure entity can identify the Holder
presenting a claim (based on a set of issued attributes x) or
learn anything about the Holder except to the extent that it
is trivially learned from the VC Issuers’ public key required
to verify the claim. Full anonymity also includes unlinkability
dictating that no Issuer or Verifier should be able to link VPs
back to their Holders; cannot keep track of the use of attributes
they issue and verify.

The above definition is twofold: On one hand, it means that
no adversary can extract any knowledge from a constructed VP
signature (σ) that helps identify who presents σ and which
credential is being used to construct σ, except for the level
of identification that can be performed from the disclosed
attributes and VC Issuers’ public keys. On the other hand,
unlinkability of the credentials and presentations is needed so
that the Holder’s actions cannot be tracked between Issuers,

Verifiers, or even between Issuers and Verifiers. While the
latter has also been highlighted as one core property for
all EU Identity Wallets [14], existing cryptographic schemes,
including the SD-JWT [15] and Mobile Security Object [16],
specified in ISO 18013, all support only linkable signatures.

Definition 5: (Unforgeability) It should not be possible for
any adversary to construct a forgery VP/VC, based on “non-
valid credentials”, that will be accepted by a Verifier (Vi).

With an unforgeable anonymous credential, for an honest
Issuer (at least one of either the DAA or VC Issuer) and
a group of honest Holders, no adversary can create a valid
signature (σD) on a claim that will be presented and accepted
by a Verifier (Vi). Here, forgery should be non-trivial, that is,
forgery should not be feasible when the Holder does not have
access to the signing key (protected by the Device Binding
property) nor when the Holder is not the intended recipient
of the used credential based on which presented claims were
disclosed (protected by the Holder Binding property).

Definition 6: (Wallet Correctness) It must be ensured that
only authenticated, non-compromised Wallets can access a
Holder’s unique identifier for creating attribute attestations
as part of a self-issued Verifiable Presentation.

This definition ensures that a Verifier will accept a presented
claim if and only if the Wallet can provide verifiable evidence
that its integrity has not been altered (from the time of cre-
dential issuance) in an unauthenticated manner. This basically
necessitates the enforcement of key restriction usage policies
for governing the credential management, leveraging a TC’s
policy-based safeguards.

II. SYSTEM MODEL

As aforementioned, DOOR leverages an enhanced version
of DAA-A [13], in order to satisfy all of the above properties
for decentralized Identity Wallets. In order to support Device
Binding of VCs, we use a hardware-protected key, which
is created and managed by a Trusted Component (TC) on
the Holder’s device (which we also refer to as Host). By
applying Direct Anonymous Attestation (DAA), we encourage
and enforce privacy requirements for VPs and its holders. By
using a combination of a DAA Key and a DAA Credential,
the holder can provide a verifiable, unlinkable, signature to be
used as proof of trusted origin and configuration.

Direct Anonymous Attestation (DAA) [12] is an anony-
mous signature scheme, which allows a TC to attest to the
state of the host system while preserving the privacy of the
Holder. While we do not build our solution around a specific
type of TC, in our implementation we have leveraged the
functionality of the TPM as the underlying root-of-trust for
providing support on cryptographic operations and secure key
storage [17]. A DAA scheme consists of an Issuer (DAA Issuer
in Figure 1) and a set of signers (Holders). It includes five
algorithms: SETUP, JOIN, SIGN, V ERIFY andLINK.
The DAA Issuer produces a DAA membership credential for
each Holder, which corresponds to a signature on the Holder’s
unique identifier. This credential authorizes the use of the HW-
based DAA Key which is stored inside the TPM and its usage
is safeguarded through a number of policy regulations.

DAA-A construction [13] appeared later as a variant of
DAA, with the difference that the public key does not cor-
respond to a single secret key but is the result of a discrete
logarithmic representation of multiple attributes. On one side,
this feature enables us to build VPs with selective disclosure
(Def. 3) by encoding each attribute as a separate key, and
on the other side, it provides controlled anonymity (Def. 4)
by allowing the representation of the identity as a separate
attribute to be hidden. The authenticity of the hidden attributes
is proven by the integrated zero-knowledge (ZK) proofs.

Relying on these strong privacy guarantees, we build our
DOOR protocol on top of DAA-A by adding extra layers
of security; i.e., constructing policy regulations to govern the
usage of the DAA Key (by the Holder) when signing attribute
claims. The component responsible for the enforcement of
these policies is the TC Bridge, which acts as the mediator
between the Wallet and the underlying TPM. One such policy
can ensure the binding of the DAA Key to the Holder’s authen-
ticated Wallet (Def. 2), which in turn enables the binding of
the issued identity data to the Holder as the intended recipient
(Def. 1). This is done by the VC Issuer through binding issued
attributes to the anonymized part of the DAA credential. We
also contract an additional policy to restrict the usage of the
DAA Key if and only if the Wallet integrity has not been
altered in an unauthenticated manner (Def. 6).

We also highlight that our notion of unforgeability (Def. 5)
is stronger than what is required in existing VC management
schemes [11] where only one Issuer is assumed in the system
model: the VC Issuer can forge credentials and, hence, create
forged signatures on presented claims. In our design, we have
prompted to adopt the separation-of-duties principle where
each Issuer is given the minimum amount of information
required to execute its respective task; i.e., Device Binding and
Key Restriction (DAA Issuer) and VC Issuance (VC Issuer),
as detailed in Section IV-A. Therefore, our unforgeability
definition provides stronger guarantees that no single Issuer
entity can forge signatures.

III. RELATED WORK

The latest advancement in the area of VCs have their base
in Anonymous Credential (AC) systems. The first practical
approach of AC was from Camenisch and Lysyanskaya known
as the CL-signatures [18] that use RSA groups and facilitate
to efficiently do the proof of knowledge of a signature.
They extended the work with CL-signatures from bilinear
groups [3], which significantly improved on the efficiency
of the scheme as it reduced the size of the keys. This was
followed by a series of works related to AC schemes such
as [19]–[21] that comes with different trade-offs related to
efficiency, privacy and security.

AC schemes allow for the construction of efficient VCs
that comes in different assertion formats, popular ones being
SD-JWT [22] and JSON-LD [23] using Linked Data (LD)
Proofs [24]. The assertion formats significantly affect the
security and privacy levels of these AC-based solutions, so it
is important to choose the right format. The LDP-BBS+ [10]

Issues

DAA Issuer

Decrypts

Provide Anonymous Proofs of Identity,
Link & Correctness w/ DAA Key

Operable
only by specfic TPM

DAA
Key

Blinding Credential

DAA
Credential

Issues

Shared with

VC Issuer

Blinding Credential

Verifiable
Credential

Hide Attributes

Verifiable
Attributes

Bound to

Blinded
DAA

Credential

Bound to

Blinded
Verifiable
Credential

Provide Data

Tr
us

te
d

C
om

po
ne

nt
TC

 A
ss

er
tio

n

Verifiable
Presentation

Verifies Presentation using Public Knowdlege

Hidden Attributes

Disclosed Attributes

Trusts

TC
 B

rid
ge

SS
I C

ry
pt

o
Ex

te
rn

al
 E

nt
iti

es

Disclosure Set
Verifiable
Attributes

Ve
rif

ie
r

Validates

D
ev

ic
e

H
ol

de
r

1 2 3

6

4

5

Fig. 1: DOOR High-level Architectural Overview and Creden-
tial Management Functionality

scheme is one of the most prominent ones in the community
and under standardization efforts in ETSI [25]. It applies the
BBS+ signature [26] to VC or VP based on JSON-LD to allow
selective disclosure of attributes. However, BBS+ signatures
are not capable of predicates, which might be required for
specific use cases, as well as it is hard to achieve selective
disclosure with a VP that is based on VCs contracted from
different issuers. Compounding this issue, LDP-BBS+ [10]
was enhanced by Yamamoto et al. [11] that allows to securely
manage credentials using BBS+ signatures for achieving se-
lective disclosure. However, relying on LD has an inherent
limitation on the anonymity level due to the ordering of
the attributes (based on the lexicographic order used by the
canonicalization algorithm) which leaks information for the
non-disclosed attributes. On the other side, the use of LD helps
to link multiple credentials from different credential issuers
and improve credential interoperability by enabling credential
anchoring to a specific trust framework, e.g. Gaia-X [27].

The AC schemes described above address some privacy
aspects, but they don’t consider the requirement of providing
a high Level of Assurance. So far, there has not been any
work that focuses on satisfying both requirements. There
is a separate line of research that focuses on protecting
cryptographic key material with hardware-based measures,
however, this is mostly related to access control and not
for safeguarding wallet integrity. For instance, Abraham et
al. [7] proposed a scheme ensuring authenticated access to
the host Wallet, utilizing the secure element of the mobile
phone, as well as a second key on a FIDO2 hardware token.
Moreover, Hanzlik and Slamanig [28] presented a highly
efficient core/helper anonymous credentials scheme (CHAC)
using a combination of signatures with flexible public keys
(SFPK) and the novel notion of aggregatable attribute-based
equivalence class signatures (AAEQ). However, this might not
be an appropriate crypto candidate in the context of digital
Identity Wallets, since it would not support other important

features including Holder Binding while their construction is
a rather resource-intensive operation.

To the best of our knowledge, DOOR is the first complete
solution capable of providing secure credential management
with selective disclosure while achieving high LoA for identity
proofing and verification, thus, achieving all requirements as
currently identified in eIDAS Regulation [29]. Our work can be
integrated into the OpenID Connect for SSI specifications [30]
as well as the technical Architecture and Reference Framework
(AFR) for implementing the European Digital Identity [14].

IV. CONCEPTUAL PROTOCOL OVERVIEW

A. High-Level Overview

This section presents the high-level flows and functionalities
of DOOR implemented to support the requirements formulated
in Section I-A. Figure 1 shows the conceptual flows between
the actors. Steps (1,2,3,4) concern Credential Management
and (5,6) Attribute Authentication, all covered in a high-level
manner in this section.

Device Binding and Key Restriction: To support Device
Binding of VCs, we use a hardware-protected key. It takes
on the role of a DAA key, built by the Holders’ TC. This
guarantees that only this particular component can read and
interact with the key, ensuring that cryptographic outcomes are
unforgeable. Before creating the key, an exchange takes place
between the key-certifying entity, i.e., the DAA Issuer (IDAA),
and the VC Issuer (IVC) in order to negotiate a TC-enforced
key restriction policy, that is requirements regarding when
the key can be used. Upon agreement on requirements, IDAA
develops a key restriction policy that captures the requirements
and sends the policy to the TC Bridge. The TC builds the
key and releases the public part of the key, containing
the public key PK and integrity-protected information,
such as the key restriction policy. This information is
shared with IDAA to verify the key produced and validate
the TC (step 1 in Figure 1). If both checks succeed, it
releases a DAA Credential for the now certified key (step 2).

Obtaining a VC: When requesting a VC, the TC Bridge
shares the DAA public key with IVC (step 3) and
authenticates the Holder, along with a DAA signature to
prove device ownership. IVC constructs the relevant attributes
(for the VC) and includes the Holder’s DAA public key as
an “identity attribute”. This binds the specific VC to the
DAA key, resulting in an issued credential being bound to
the physical device Wallet. The credential is returned (step
4) to the Holder and stored in the Wallet.

Generating a Verifiable Presentation: A VP is a representa-
tion of a subset of the attributes issued as part of the Verifiable
Credential. It can be verified by any Verifier knowing the
respective VC and DAA credentials. To protect against VP
linkability, we are contracting a “blinding” or “randomization”
operation to the credentials. This process does not negate the
Device Binding property (Def. 2), but ensures Full Anonymity
and Unlinkability (Def. 4) against both the VC Issuer (not

PCR#1 PCR#2 PCR#24...

Valid
Policy

Provides Signed Policy Provides Intent through Signature

Provides Authentic Measurements

Compares state with Authorizes Signature

DAA Issuer Wallet

Policy Index Platform Configuration Registers

DAA Key

TP
M

 D
om

ai
n

Ex
te

rn
al

 D
om

ai
n

Fig. 2: DAA signing key usage requires both authentication
tokens from Wallet, and internal PCRs to be in a trusted state.

keep track of the use of the attributes they have issued) and the
Verifier (conducting attribute validity). Following this blinding,
the Holder then decides which attributes to disclose. All non-
disclosed attributes are hidden by using a cryptographic oper-
ation that attests to their equivalence in the original VC, thus,
providing the necessary proof that the VP has been correctly
computed by the Holder which owns the Wallet of credentials
(creates a bound signature associated to the attribute values).
The “identity attribute” (the DAA private key) will always be
hidden by the TC, to ensure anonymity. The final presentation
blob is now constructed as a set of disclosed and non-disclosed
attributes accompanied by the two blinded credentials and
can be shared with any Verifier. To verify that both hidden
and revealed attributes were certified in the VC, the Verifier
can use the mechanisms provided by the DAA-A scheme to
confirm attribute validity and that the Holder also controls the
rest of the (undisclosed) attributes. Furthermore, she can also
assert that the correct key restriction usage policy has been
implemented to ensure Wallet Correctness (Def. 6).

B. Principles of Secure Wallet Construction

It should now be evident that DOOR protects the HW-based
DAA key with a set of policies for ensuring Wallet Correctness
and verifying that only the authenticated (intended) Wallet can
interact with the TC through the TC-Bridge software stack.
A Verifier trusts the DAA Issuer to validate the DAA key
and the TPM, which implies trust in any assertions produced
by that key. An asymmetric key pair created by the TPM is
de facto bound to it. Keys are created as Primary Keys (re-
creatable under a secret internal unique seed) or as Children
Keys of a Primary key (encrypted by the parent). As private
keys never leave the TPM, the produced keys are restricted
to the physical chip. TPMs also provide a policy-enforcing
functionality that can bind an integrity-preserved policy to a
key, thereby restricting the use until the policy is satisfied; we
call this a key restriction policy. To satisfy a policy, one or
more policy commands [31] are executed on the TPM, each
providing distinctive evidence. Therefore, if a policy-protected
TPM key provides a signature, the Verifier can be sure that the
policy has been satisfied. In the rest of the section, we cover
how the TPM is used to protect the DAA key from untrusted
device configurations and unauthorized Holders using policies.

Restrict to Trusted Configuration The TPM includes a set
of internal extendable registers called Platform Configuration
Registers (PCRs). These store measurements of the residing
platform (the Holder device) as chained hashes originating
from a root of trust for measurements (e.g., CPU microcode,
TEEs, or similar). We can build a policy that can be satisfied,
if a selection of PCRs matches a predetermined value,
referencing a trusted state. Using PolicyPCR, we ensure
that the DAA key is inoperable, if the integrity of the device
state is compromised. Since policies are immutable, updating
the reference values (the policy itself) will require a new key
with an updated policy to be issued. To avoid this, the DAA
key is instead bound to the contents of an internal non-volatile
register through a policy called PolicyAuthorizeNV.
Any policy (e.g. PolicyPCR) residing in the register,
the Policy Index (PI), must be satisfied before the TPM
allows the use of the key. To protect the PI from malevolent
changes, it is itself protected by a policy. This policy
(PolicySigned) requires that in order to write a policy to
the PI, IDAA must sign it. This policy also protects the deletion
of the index, to prevent recreation, and is resistant to replay
attacks by including a TPM session-nonce in the authorization.

Wallet (PK) IDAA ((x, y), ρ)

request−−−−−→
ρ←−−− ρ← {0, 1}λ

TPM Calculate PK =
x0G0 1

(ρ,PK)−−−−−−→
∀ x0

∗ ∈ KRL , abort if
PK = x∗

0G0

r ∈R Zq

A = rG0, B = yA
C = xA+ rxyPK
D = ryPK 2
ω ∈R Zq ;

ĉ = H1

(
ωG0|ωPK|ρ

)
3

ŝ = ω − ĉry
(A,B,C,D,ĉ,ŝ)←−−−−−−−−−−

τ(A, Ỹ)
?
= τ(B, G̃0) 4

τ(A + D, X̃)
?
=

τ(C, G̃0)

ĉ
?
= H1

(
ĉB+ ŝG0|ĉD+

ŝPK|ρ
)

5

Fig. 3: The Join Protocol with IDAA. Note: x0 is private to TPM

Key Ownership and Usage As the TPM is not uniquely
accessible from the TC Bridge, the Verifier cannot determine
who ordered the signature. To appoint ownership of the DAA
key, we again use the TPM policy functionality. Policies
are not restricted to singular commands, but can be built
as multiple policies in an order-restrictive format; hence, we
can add more policies to the already described PolicyPCR.
The Wallet comes with a pre-installed key, the “Wallet key”

(WK), which we can use in PolicySigned, as we did to
protect the PI (require a signature to authorize operation).
Any trusted applications (not part of the Wallet stack) cannot
access the WK, and untrusted applications are locked out
by PolicyPCR. A signature of the DAA key provides the
Verifier with the evidence of Holder correctness, as seen in
Figure 2. However, a DAA signature requires an additional
cryptographic operation, namely the Commit operation. As
this operation is not used to provide evidence to a Verifier,
it should not be restricted. Furthermore, since the DAA key
is used to certify the PI using NV_Certify, this should
be allowed without using resources on the other policies.
TPMs provide the functionality to allow multiple policies to
be valid, using a special policy command PolicyOR. This
allows the key to be operable if the sign policy is satisfied
(proof of intent and correctness) or if the next command
is authorized (Commit and NV_Certify). Both can be
allowed using individual policies using the policy command
PolicyCommandCode.

V. ARCHITECTURAL DETAILS & PROTOCOLS

Notation Let F be a finite base field and F̃ be a finite
extension field of F . Let E be an elliptic curve defined over
F with a base point G0. Let Ẽ denote the points of E over
the extension field F̃ and G̃0 be a base point of Ẽ. G̃0 is used
to generate the Issuers’ public keys in Ẽ, whereas G0 is used
to generate the public part of the TPM’s DAA Key in E. The
curve E is equipped with a type III pairing τ : E×Ẽ → F̃ . τ is
used to verify the DAA and VC credentials under the Issuers’
public keys. The operation on E (resp. Ẽ) is written with
additive notation. Multiplication by scalars is always written
on the left. Scalars are always defined on Zq (from where
the secret keys are sampled), where q is a prime number that
represents the order of the subgroup ⟨G0⟩ in E. Arithmetic
has to be understood in the respective finite fields. Uppercase
Latin or Greek letters always indicate EC points on the curve
E. Uppercase Latin or Greek letters with a tilde on top will
denote elements on the curve Ẽ.
Setup: The public group elements G,G1, . . . , Gn ∈ E and
G̃, G̃1, . . . , G̃n ∈ Ẽ are generated from G0 and G̃0 respec-
tively, where G = rGG0, Gk = rkG0, G̃ = rGG̃0 and
G̃k = rkG̃0 for k = 1 . . . n and rG, rk ∈R Zq , where ∈R
indicates that the elements are chosen randomly. G1, . . . , Gn

will be used in our scheme to generate the attribute tokens
in E. G̃, G̃1, . . . , G̃n are used in the verification phase in the
batch proof trick presented later in the section. It is required
that the values of rG and rk for k = 1 . . . n are generated by
the setup system and erased after the setup process, such that
there is no known discrete logarithm relation between any Gk

and Gj (for some j ̸= k) and between any Gk and G. The
hash function: H1 : {0, 1}∗ → Zq is used in our scheme
to output the challenge c used when creating Schnorr Non-
interactive Zero-Knowledge Proofs. IDAA’s signing secret key
consists of two integers x, y ∈ Zq . X̃ = xG̃0 and Ỹ = yG̃0

correspond to IDAA’s public key. Let u, v ∈ Zq be the VC
Issuer’s private key. Ũ = uG̃0 and Ṽ = vG̃0 correspond to

Wallet (PK) IVC ((u, v), ρ)

requestV C (PK)
−−−−−−−−−−−−→
Keyw={x1,x2,...,xn}, n ∈R Z 1
←−−−−−−−−−−−−−−−−−−−−−−−−−

TPM Calculate σDAA

on (KeyW , n) 2 σDAA
−−−−−→

Verifies σDAA on (KeyW , n)
Γ = PK +

∑k=n
k=1 xkGk 3

t ∈R Zq 4
Aw = tG,Bw = vAw

Cw = uAw + tuvΓ
Dw = tvΓ 5
EWk

= tvGk ∀ k ∈ [0, n]

6
γ ∈R Zq

ĉw =

H1

(
γG|γG0| . . . |γGn|γΓ|ρ

)
ŝw = γ − ĉwtv 7

(Aw,Bw,Cw,Dw,EWk
,ĉw,ŝw,ρ)

←−−−−−−−−−−−−−−−−−−−−−−−
τ(Aw, Ṽ)

?
= τ(Bw, G̃0)

τ(Aw + Dw, Ũ)
?
=

τ(Cw, G̃0) 8
ĉ′w = H1

(
ĉwBw +

ŝwG|ĉwEW0
+

ŝwG0|ĉwEW1
+

ŝwG1| . . . |ĉwEWn +

ŝwGn|ĉwDw + ŝwΓ|ρ
)

ĉ′w
?
= ĉw 9

cre = (crePK , crew)

Fig. 4: The Join Protocol with IVC (Issue VC)

the VC Issuer’s public key. Let us highlight that IDAA creates a
proof of knowledge πDAA

ipk to prove that the relation between
(x, y) and (X̃, Ỹ) is well established (i.e. X̃ = xG̃0 and
Ỹ = yG̃0). This proof correctly binds the public key (X̃, Ỹ)
to its corresponding secret key (x, y). This step is crucial
for the correctness of the protocol, which states that honestly
generated signatures should successfully verify, hence verified
under the same Issuer’s public key who initially created the
user credential. Similarly, IVC proves that key correctness by
providing a proof of knowledge πV C

ipk of (u, v).

A. Credential Management

In our architecture, VCs are enhanced with hardware-based
keys issued from a Trusted Component (e.g., TPM). This
key (DAA Key) must be accompanied by a credential
(DAA Credential) certifying its properties and enabling the
key to work. All VCs issued are, therefore, bound to a
particular DAA Key, hence the creation and certification
of this must happen prior to the issuance of a VC. Each
issuer is assumed to have an authentic copy of the TPM’s
endorsement key, which is used to establish a secure and
authenticated channel between the TPM and the issuer. In
the join protocol description, it is assumed the existence
of a secure authentication channel between the TPM and
the DAA/ VC Issuer, the reader is recommended to find
the detail regarding how to establish such a channel from [32].

Issue DAA Credential: Before establishing contact with IDAA,
the TC Bridge configures the TPM to enable safe storage of the

Issuer-generated key restriction policy. It does so by creating
the TPM-protected Policy Index (PI) with safety mechanisms
that only allow the IDAA Issuer to modify it. The TC Bridge
computes a policy for the upcoming DAA key that makes the
key usable only if the policy stored in the PI can be satisfied.
To do so, it acquires the unique index name N and calculates
the policy digest according to the TPM standard. With the
newly created policy, the TC Bridge sends it to the TPM with
instructions to generate a new DAA Key. Internally, the TPM
chooses the secret DAA Key x0 ← Zq and sets its public key
PK = x0G0 1 . It returns PK, alongside other parameters
(i.e., policy) in an integrity-protected data structure.

An authorization session is started with the TPM, returning
a nonce n to the TC Bridge. A registration package can now be
assembled, consisting of the DAA Key data structure, nonce
n, index name N , the public TPM Endorsement Key (EK),
and the Wallets’ SW-based public key WK, sent to IDAA.
IDAA verifies that the DAA key policy ensures the contents

of the PI are satisfied, and computes the key-restriction policy
to be written to the PI. This policy, K, can only be satis-
fied by proof-of-intent from the WK and if the integrity of
the Wallet is not compromised. It then computes the write-
authorization by computing ac = H(n|0|cc|0016), where cc =
H(CC_NV_Write|N |N |K), and signs it with IDAA private
key to produce σa. This authorization allows K to be written
to an index, with name N , in a session identified by nonce n.
IDAA then creates a challenge using the make_credential
functionality of the DAA scheme. The challenge, authoriza-
tion, and policy are returned to the TC Bridge, which satisfies
the PI policy using the provided authorization to write the
policy K, authorized by IDAA, enabling operations of the key.
By using the activate_credential functionality, the
TPM computes the challenge response. It then computes πM

as proof of construction of PK. To provide evidence of the
creation and contents of the PI, the TPM provides an Index
Certificate signed by the DAA Key.

The resulting certificate and the challenge response are
sent to IDAA, who first verifies πM to check whether the
TPM Wallet is eligible to join, i.e., the DAA Key has not
been previously certified. If this validation succeeds, IDAA
verifies that the current contents of the PI match the previously
computed policy and that writing and deleting the PI requires
IDAA authorization. If this verification succeeds, it will now
compute the credential (Fig. 3). A random r ∈R Zq is chosen
and used to calculate the four points (A, B, C, D) 2 .

To provide authenticity, IDAA performs a Schnorr ZK proof
written as (ĉ, ŝ), which shows that the discrete logarithms are
equivalent. To do this, IDAA chooses a random ω ∈R Zq; and
calculates the challenge ĉ and signature ŝ 3 , where ρ is for
freshness agreed by IDAA, the VC Issuer and the signer.
IDAA sends the PK-credential crePK : (A,B,C,D, ĉ, ŝ) to

the Wallet (TC Bridge), which represents the credential that
corresponds to the Holder with embedded TPM with Public
DAA Key PK = x0G0. Upon receiving crePK , the Wallet
verifies the credential under IDAA’s public keys X̃ and Ỹ by
checking the pairings 4 and verify the discrete logarithm

TPM (x0) Wallet (PK,KeyW)

a ∈R Zq 1
A′ = aA,B′ = aB,C′ = aC D′ = aD
A′

w = aAw;B′
w = aBw

C′
w = aCw, D′

w = aDw

E′
Wk

= aEWk
∀ k ∈ [0, n] 2

TPM2_Commit(B′ + E′
W0

) 3
←−−−−−−−−−−−−−−−−−−−

ω0 ∈R Zq

R0 = ω0(B′+E′
W0

) 4
R0−−→

{ω1, . . . , ωp} ∈R Zq

RWk
= ωkE

′
Wk
∀ k ∈ P 5

c = H1(A′|B′|C′|D′|A′
w|B′

w|C′
w|D′

w|E′
W0
|E′

W1
| . . . |E′

Wn
|R0 +∑

k∈P
RWk

|m′) 6

TPM2_Sign(c)←−−−−−−−−−
s0 = ω0 + cx0 7

s0−−→
sk = ωk + cxk ∀ k ∈ P
σ = (A′, B′, C′, D′, A′

w, B′
wC′

w, D′
w, E′

W0
, . . . , E′

Wn
, sk, s0, c)

Fig. 5: Creating Verifiable Presentations

equivalence via (ĉ, ŝ) 5 . If the above verification passes
are successful, the Wallet stores crePK and can now acquire
VCs. Note that this DAA Key and credential is usable with
multiple VC Issuers as long as they assert the authorized
policy from the DAA Issuer.

Issue Verifiable Credential: To obtain a Verifiable Credential
(Figure 4), the Wallet sends a request to IVC to issue a
credential for a set of attribute keys (e.g. all attributes for
a drivers license). This request contains the DAA Key PK
and any other authenticating information. IVC authenticates the
Wallet and defines the Holders’ attribute space U , covering
the set of attributes x1, . . . xn that correspond to the attributes
related to the Holder, now identified by the DAA Key (PK).

IVC sets the Wallet attribute keys (attributes) and sends it to
the TPM Wallet with a nonce n 1 . Recall that an attribute
key is just an encoded attribute using the hashing function
H1. The Wallet stores the attribute keys (x1, . . . , xn) along
with crePK and must now prove to IVC that it controls the
DAA Key provided. To do so, the TC Bridge satisfies both
the commit and sign policy and uses the TPM to generate a
DAA signature σDAA 2 , using the standard DAA signature
scheme, and sends it to IVC. IVC verifies the signature; If
the verification passes, IVC generates a verifiable credential
crew, which contains a signature on all the attribute keys by
performing the following steps. IVC calculates Γ 2 which
now represents the Holders’ public key for the attributes, later
used for verification. It then chooses a random value 3 and
calculates the points Aw, Bw, Cw, Dw 5 . Following this the
values Ew can be calculated as shown in 6 . These values
demonstrate that key xk that was used to provide signature sk,
indeed was a certified attribute key. IVC then chooses a random
value and calculates the challenge ĉw and ŝw 7 , where ρ is
a message of freshness agreed by IVC, IDAA and the Holder,

just as the credential for the DAA key.
IVC sends the credential crew =

(Aw, Bw, Cw, Dw, EWk
, ĉw, ŝw) back to the Wallet. Upon

receiving crew, the Wallet verifies the signatures. First, it
check the pairings 8 and it this check is successful, it
then validates the Schnorr signature 9 . If this check also
succeeds, the credential (VC) is stored in the Wallet.
Storing: Both types of credentials can be stored and managed
by an Identity Wallet, but in order to use the credentials,
the Wallet must be extended with our TC Bridge. Even if
credentials are lost due to theft or data leaks, this does not
raise any concern regarding possible misuse. Since a VC is
binded to a unique hardware key (DAA key) and this key
can only be accessed by a particular TPM, stolen credentials
cannot provide any valid Verifiable Presentations.

B. Attribute Authentication

To verify a set of attributes from a credential, the Wallet
uses the TC Bridge to compute a VP. With our architecture,
the TC Bridge can only create a VP on the device to which
the corresponding credential was issued, with a proven intent
of the requesting Wallet. Additionally, due to the extended
hardware support, the Trusted Component will only provide
the necessary assertions if the integrity of the Wallet and TC
bridge is not compromised.

Creating Verifiable Presentations: The TPM checks if the
policy is satisfied, i.e., the device is in the correct state. If
so, it creates a DAA signature (σDAA) using its DAA creden-
tial (crePK) and its corresponding key. Using the basename
(bsn = ⊥), the signature becomes unlinkable. The TC Bridge
creates a Proof-of-Knowledge that, as depicted in Fig. 5,
enables the Holder to present a valid credential for the attribute
key (Keyw = (x1, . . . , xn)) and such that the overall DAA
signature is only verified under a certified public key of the

device (Γ = PK +
∑n

k=1 xkGk), where PK is a certified
TPM key from IDAA. The flow of this is as follows.

1) Blind: The TC Bridge creates a random number and uses
it as a blinding factor 1 . Then it blinds both the DAA-
and Verifiable Credential by multiplying the blinding factor
upon the eight respective points and E-values 2 , this step
is crucial for unlinkability.

2) TPM Commit: The TC Bridge commits the B point from
the DAA Credential and the first E-point from the VC using
the TPM 3 . At this point the TPM choses a random value
ω0 and multiplies that upon the committed value 4 , this
random value is safely stored in the TPM, to be used later.

3) TC Bridge Commit: The next step is to commit all the
attributes we do not wish to disclose, within the host. Let
D be the set of indices of the disclosed attributes needed
for a specific service, and let P = {1, . . . , n}\D represent
the set of indices of all other committed (hidden) attributes.
We can represent P by the set {1, . . . p} that denotes the
indices of the committed attributes with p ≤ n. For each
committed attributes, the Wallet selects a random value and
multiply it upon the respective E-points 5 . The random
values are stored within the host.

4) TPM Sign: The TC Bridge calculates the hash value to be
signed, c, 6 and satisfies the signing policy and executes
TPM2_Sign to sign c. TPM then signs the hash using the
same ω0 as used in the TPM Commit phase and the DAA
private key 7 .

5) TC Bridge Sign: The Wallet signs each of the committed
attributes using the respective ω
and outputs sk = ωk + cxk ∀ k ∈ P , us-
ing the attribute keys. The Wallet sends σD =
(A′, B′, C ′, D′, A′w, B

′
w, C

′
w, D

′
w, E

′
W0

, . . . , E′Wn
,

s0, sk∈P , xk∈D, c) to the verifier.

Verification: The verifier checks the attributes and verifies
the DAA signature as follows.

1) Verify the modified CL certificate by checking the pairings
on both the blinded DAA- and Verifiable Credential:
τ(A′, Ỹ)

?
= τ(B′, G̃0) and τ(A′ +D′, X̃)

?
= τ(C ′, G̃0).

τ(A′w, Ṽ)
?
= τ(B′w, G̃0) and τ(A′w+D′w, Ũ)

?
= τ(C ′w, G̃0).

2) Verify the equivalence of the discrete logarithm using the
batch proof trick from [12]: t0, t1, . . . , tn ∈ Z;

τ(t0E
′
W0

+ . . .+ tnE
′
Wn

, G̃)
?
= τ(B′w, t0G̃0 + . . .+ tnG̃n)

3) Verify the Schnorr ZK proof of knowledge of the hidden
attributes:
µW =

∑
k∈P

skE
′
Wk

+s0(B
′+E′

W0
)−c(D′+D′

w−
∑
k∈D

xkE
′
Wk

)

c
?
= H1(A

′|B′|C′|D′|A′
w|B′

w|C′
w|D′

w|E′
W0

| . . . |E′
Wn

|µW |m′)
4) Outputs Valid if all checks and verification pass.

As in [11], our protocol can offer linkability of the commit-
ted attributes even when are not issued by the same VC Issuer.
This is done by the TC Bridge by adding attribute link tokens
in the form of Jk = xkH2(bsnk) for each committed attribute
xk for some verifier’s input bsnk and H2 : {0, 1}∗ → E. If any
two signatures that are signed under the same bsnk contain the

same Jk, then the verifier is convinced that the signers share
a common attribute xk without learning anything about xk.

VI. PERFORMANCE EVALUATION

This section presents a performance analysis and evaluation
of DOOR. We implemented our scheme and timed each
component using real-time measurements for both the TC
as well as the Holder device since they might be equipped
with different processing units: As a Trusted Component, we
leveraged a TPM featuring the Infineon SLI Iridium 9670 co-
processor while the Holder’s Identity Wallet was instantiated
in a Raspberry Pi 4, Model B, mimicking a handheld device in
terms of computational power. Four experiments were carried
out, including 1) Initialization of the Policy Index, which
corresponds to the creation, authorization, protection, and
storage of a key restriction policy; 2) The issuance of a DAA
credential (DAA Join), creating the DAA Key, certifying it,
and verifying the policy and PI; 3) The Issuance of a Verifiable
Credential; and 4) The creation and verification of a VP, which
checks the satisfaction of the key restriction usage policies and
the generation of attribute attestations.
Experimental Setup: Besides the detailed benchmarking of
DOOR (that follows), and its internal crypto building blocks,
we also opted for a comparison with other crypto schemes that
have been adopted by the standards for capturing the security
requirements as defined in the current eIDAS 2.0 ongoing
specification [29]. Recall that eIDAS 2.0 states that Identity
Wallets should enable the selective disclosure of attributes
amended with the necessity of identity privacy when attribute
verification does not require the identification of the user.
As described in Section III, current schemes cited in the
EUDI Wallet Architecture and Reference Framework [14]
revolve around the use of BBS+ and CL primitives, which
are multi-message signature algorithms, for enabling selective
disclosure and BLS digital signature scheme, with aggregation
properties, for safeguarding user anonymity as part of a set of
VPs verification process constructed by multiple users. Even
though comparison against DOOR will not lead to an optimal
validation of all approaches, as DOOR is not constrained to
only selective disclosure and anonymity properties but also
asserts the Wallet integrity as one of the attributes for enabling
LoA “high”, in what follows (and for a fair comparison)
we have broken down all DOOR operations (as presented in
Section V) and focused only on those concerning attribute
authentication and management. The core impact factor in this
context is the number of attributes comprising a VC: Based on
various use cases defined by ISO/IEC 18013-5, an estimate of
attributes that are usually included in digital credentials such
as driver’s licence, identity-based tokens, digital certificates
for learning, etc., is around 35 (i.e., 12 mandatory and 23
optional attributes). For the sake of completeness, the number
of attributes considered in our experiments covered the two
extremes - VP construction comprising 8 (low-end), 16, 32,
64, and 128 (high-end) attributes. For each of these VP
creation/verification operations, we experimented with three
scenarios: 1) Where no attributes are revealed; 2) where

TABLE I: Create & Verify Verifiable Presentation

Activity Mean ± (95% CI)
Host Calculations 33.63 ms 4.04 ms

Total TPM Time 1324.36 ms 44.80 ms
TPM2 StartAuthSession 52.48 ms 2.67 ms
TPM2 PolicyCommandCode 1.51 ms 0.03 ms
TPM2 PolicyOR 3.11 ms 0.09 ms
TPM2 PolicyAuthorizeNV 326.28 ms 7.41 ms
TPM2 Commit 176.63 ms 3.23 ms
TPM2 Hash 119.27 ms 9.41 ms
TPM2 StartAuthSession 51.32 ms 2.64 ms
TPM2 PolicyPCR 2.57 ms 0.07 ms
TPM2 PolicySigned 141.02 ms 2.06 ms
TPM2 PolicyOR 3.18 ms 0.10 ms
TPM2 PolicyAuthorizeNV 325.37 ms 7.74 ms
TPM2 Sign 121.62 ms 9.35 ms
Total Create Time 1357.99 ms 48.84 ms
Verify Presentation 85.40 ms 5.02 ms

half of the attributes are revealed; and lastly, 3) where all
attributes are revealed. To ensure reliable measurements, we
executed all experiments one thousand times and calculated the
average time consumed. For comparison, we also ran the same
experiments with BBS+ to evaluate the efficiency as it pertains
to selective disclosure. Furthermore, to achieve comparable
performances, we used a BBS+ library [33] written in Rust, a
highly efficient programming language comparable to C.

Table I depicts the timings for creating and verifying a
VP. 91% of the time consumed by the TPM is directly
related to satisfying the key restriction policies for enforcing
the requirements of Device Binding and unforgeability. Only
around 120 ms is directly related to producing a signature from
a hardware-based key. The remaining operations take only 34
ms and include the selective disclosure of attributes. As this is
not related to the TPM, this shows that DOOR can effectively
handle selective disclosure and that the primary overhead is
related to hardware-based security for ensuring LoA “high”.
On the same note, verifying the presentation is very effective
as operations do not require a TPM, but instead rely on trust
in the Issuers and only require the two public keys. The last
two experiments are related to phases that are not expected
to occur often. These include the initialization and provision
of the policy index and the creation and verification of the
DAA Key. Creating the PI is fairly fast, requiring only around
125ms for IDAA and around 460ms for the TPM operations.
However, this is an important step, for reducing the occurrence
of re-issuing DAA keys due to policy updates. Creating a new
DAA Key takes around 3.5 seconds, which is primarily due
to proving correct constructions.
Creating Verifiable Presentations with Selective Disclosure:
In Figure 6, we see how BBS+ signatures are highly affected

by an increase in the number of managed attributes, compared
to DOOR. It is also notable how the VP construction is
interdependent on the interplay between disclosed and hidden
attributes: the less we disclose in a presentation, the more time-
consuming operation it is. While this is also a crucial factor
for DOOR, the difference in the high-end case (128 attributes)

8 16 32 64 128
0

500

1,000

1,500

2,000

2,500

Number of Attributes

Ti
m

e
[m

s]

Create Verifiable Presentations

BBS+ No disclosure

BBS+ Half disclosure

BBS+ Full disclosure

DOOR No disclosure

DOOR Half disclosure

DOOR Full disclosure

DOOR No Disclosure + Policy

Fig. 6: Comparison between BBS+ and DOOR for creating
Verifiable Presentations. X-axis is of a logarithmic nature.

between full- and no disclosure is 55.72ms, showcasing an
increase of 12%, compared to BBS+ which takes up to
774.17ms, resulting to an increase of 45%. However, if we
also consider the key restriction usage policies of DOOR (as-
sociated with the Wallet’s LoA), this will increase the overall
timing requirement by around 1000 ms (shown with the star-
marked line). In this case, BBS+ is significantly faster for low-
count attributes, however, BBS+ does not provide comparable
trust assurances in this case which, as aforementioned, is a
key requirement of eIDAS 2.0.
Verifying Verifiable Presentations: For the verification of
VPs (Figure 7), DOOR outperforms BBS+. This operation is
independent of the presence of TC-enabled policy safeguards,
making them directly comparable. Both algorithms generally
showcase the same increment pattern with respect to time, as
the number of attributes increases, while DOOR remains twice
as fast as BBS+. It’s noteworthy that for BBS+, verifying a
presentation is faster in the case of full disclosure compared to
half- and no disclosure. In the case of DOOR, this is reverted:
full disclosure takes longer to verify.
Anonymity & Unlinkability: As it pertains to anonymity,
we evaluated the performance of DOOR’s DAA blind signa-
tures against the adopted-by-the-standards BLS scheme: As
expected, the integration of BLS-based signatures is rather
efficient as it takes < 3 ms for creating an aggregate signature
on a set of VPs to be presented to a Verifier. In contrast, DOOR
requires around 10 ms. This, of course, does not consider
the time needed for anonymizing the DAA credential that is
also sent together with the constructed VP for enabling the
anonymous proof-of-ownership of the VC with the associated
attributes (this operation is more resource-intensive and might
take more than 100 ms). Therefore, both schemes are compa-
rable when it comes to timing requirements, although DOOR
also enables the features of controlled linkability. Finally, the
identity proofing and verification process is equivalent in both

8 16 32 64 128
0

200

400

600

800

1,000

1,200

Number of Attributes

Ti
m

e
[m

s]

Verify Verifiable Presentations

BBS+ No disclosure

BBS+ Half disclosure

BBS+ Full disclosure

DOOR No disclosure

DOOR Half disclosure

DOOR Full disclosure

Fig. 7: Comparison between BBS+ and DOOR for verifying
Verifiable Presentations. X-axis is of a logarithmic nature.

schemes as it mainly includes calculations executed on the
host: it takes less than 1 ms in both cases. We have to
note, again, that this does not include the time needed for
verifying the (anonymized) DAA credential in which case
the overall time overhead is around 80 ms. All in all, even
against well-established schemes, DOOR exhibits a rather
equivalent performance while surpassing them in terms of
offered functionalities.

VII. CONCLUSION

DOOR offers higher levels of confidence to the authenti-
cation and electronic identification service of digital identity
Wallets - hence a higher LoA. It also enables construction
of Verifiable Presentations that selectively disclose only those
attributes needed for verification, ensuring at the same time
that anonymity and unlinkability is preserved. The implemen-
tation and evaluation of the performance of DOOR showed
the effectiveness of the design of our protocol. As future
work we plan to add the functionality of constructing one VP
for combining attributes not only based on bound and public
credentials but also multiple credentials issued from different
Issuers. This could open up new application scenarios.

VIII. ACKNOWLEDGMENT

This research has received funding from the European
Union’s Horizon Europe EU Research & Innovation pro-
grams CONNECT and REWIRE under Grant Agreement No.
101069688 and 101070627, respectively.

REFERENCES

[1] W3C Recommendation, “Decentralized Identifiers (DIDs) v1.0 Core ar-
chitecture and representations,” 2021. https://www.w3.org/TR/did-core/.

[2] M. Sporny, D. Longley, and D. Chadwick, “Verifiable Credentials Data
Model 1.1.” https://www.w3.org/TR/vc-data-model/, 2022.

[3] J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous
credentials from bilinear maps,” in Advances in Cryptology, 2004.

[4] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Comm. of the ACM, vol. 28, no. 10, 1985.

[5] P. Bichsel, J. Camenisch, M. Dubovitskaya, R. Enderlein, S. Krenn,
I. Krontiris, A. Lehmann, G. Neven, J. D. Nielsen, and C. Paquin,
“D2.2 Architecture for attribute-based credential technologies-final
version,” ABC4TRUST project deliverable. Available online at
https://abc4trust.eu/index.php/pub, 2014.

[6] H. B. Debes and T. Giannetsos, “Segregating keys from noncense:
Timely exfil of ephemeral keys from embedded systems,” in Int. Conf. on
Distributed Computing in Sensor Systems (DCOSS), pp. 92–101, 2021.

[7] A. Abraham, C. Schinnerl, and S. More, “SSI Strong Authentication
using a Mobile-Phone based Identity Wallet reaching a High LoA,” in
SECRYPT, pp. 137–148, 2021.

[8] European Union, “Council regulation (EU) no 1502/2015,” 2015.
[9] Decentralized Identity Foundation, “Device Binding Work Item.”

https://github.com/decentralized-identity/wallet-security/blob/main/
work items/device binding.md. Accessed: 2023-07-30.

[10] T. Looker and O. Steele, “BBS+ Signatures 2020.” https://w3c-ccg.
github.io/ldp-bbs2020/. Accessed: 2023-07-30.

[11] D. Yamamoto, Y. Suga, and K. Sako, “Formalising linked-data based
verifiable credentials for selective disclosure,” in 2022 IEEE (Eu-
roS&PW), pp. 52–65, IEEE, 2022.

[12] L. Chen, “A DAA Scheme Using Batch Proof and Verification,” TRUST,
vol. 10, pp. 166–180, 2010.

[13] L. Chen and R. Urian, “DAA-A: Direct anonymous attestation with
attributes,” in Int. Conf. on Trust and Trustworthy Computing, pp. 228–
245, Springer, 2015.

[14] European Commission, “The European Digital Identity Wallet Architec-
ture and Reference Framework,” tech. rep., 2013.

[15] IETF, “Selective Disclosure for JWTs (SD-JWT),” tech. rep., 2022.
[16] Secure Technology Alliance, “The Mobile Driver’s License (mDL) and

Ecosystem,” tech. rep., 2020.
[17] A. Angelogianni, I. Krontiris, and T. Giannetsos, “Comparative evalua-

tion of pki and daa-based architectures for v2x communication security,”
in 2023 IEEE VNC, pp. 199–206, 2023.

[18] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”
in Advances in Cryptology—EUROCRYPT, pp. 93–118, Springer, 2001.

[19] O. Sanders, “Efficient redactable signature and application to anonymous
credentials,” in 23rd IACR Int. Conf. on Practice and Theory of Public-
Key Cryptography, pp. 628–656, Springer, 2020.

[20] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya, “P-
signatures and noninteractive anonymous credentials,” in Theory of
Cryptography: Fifth Theory of Cryptography Conference, TCC 2008,
New York, USA, March 19-21, 2008. Proceedings 5, pp. 356–374,
Springer, 2008.

[21] D. Boneh and X. Boyen, “Short signatures without random oracles,” in
Advances in Cryptology-EUROCRYPT, pp. 56–73, Springer, 2004.

[22] IETF, “SD-JWT,” 2023. https://www.ietf.org/archive/id/
draft-fett-oauth-selective-disclosure-jwt-02.html.

[23] G. Kellogg, D. Longley, and P.-A. Champin, “JSON-LD 1.1. A JSON-
based Serialization for Linked Data (W3C Recommendation),” July
2020. https://www.w3.org/TR/json-ld11/ [Online].

[24] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So
Far,” Int. Journal on Semantic Web and Information Systems (IJSWIS),
vol. 5, no. 3, pp. 1–22, 2009.

[25] ETSI, “ETSI GR CIM 018 V1.1.1 Enabling chain of trust from the
content sources to content consumers,” 2022.

[26] J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous Attestation
Using the Strong Diffie Hellman Assumption Revisited,” in Trusted
Computing, pp. 1–20, 2016.

[27] Gaia-X, “Gaia-X Compliance Service,” 2023. https://gaia-x.gitlab.io/
policy-rules-committee/trust-framework/gaia-x trust framework/.

[28] L. Hanzlik and D. Slamanig, “With a little help from my friends:
Constructing practical anonymous credentials,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2004–2023, 2021.

[29] GSMA Europe, “Architecture Considerations for eIDAS
2.0,” 2023. https://www.gsma.com/gsmaeurope/resources/
architecture-considerations-for-eidas-2-0/.

[30] K. Yasuda, T. Lodderstedt, D. Chadwick, K. Nakamura, and J. Vercam-
men, “OpenID for Verifiable Credentials,” tech. rep., 2022.

[31] T. C. Group, “Trusted Platform Module Library Part 3: Commands,”
tech. rep., 2019.

[32] L. Chen, N. El Kassem, and C. J. Newton, “How To Bind A TPM’s
Attestation Keys With Its Endorsement Key,” The Computer Journal,
2023.

[33] M. Lodder, “The BBS+ signature scheme.” https://crates.io/crates/bbs.
Accessed: 2023-07-30.

